China Custom Auto Lathe Spare Parts Turning Washer Bushing Bolt Nut Flexible Coupling

Product Description

Quick Details

washer bushing bolt nut Flexible Coupling 
Auto Engineering Turning CNC Machined Precision aluminium stainless steel brass Machining
Auto lathe turned Turning Aluminium Auto CNC Parts machined,machining
OEM manufacturer Automatic Lathe part Turned Turning Aluminium SUS304 CNC Parts Machined,Machining part

CNC Machining or Not: CNC Machining
Type: Broaching, Drilling, Etching / Chemical Machining, Laser Machining, Milling, Other Machining Services, Turning
Material Capabilities: Aluminum, Brass, Bronze, Copper, Precious Metals, Stainless Steel, Steel Alloys
Micro Machining or Not: Micro Machining
Place of Origin: ZheJiang , China (Mainland)
Model Number: 
Brand Name: CDX
CNC Machining Parts: metal parts

Product Description
   
 
 

Material: Aluminum (6061-T6, 6063, 7075-T6,5052) etc…
Brass/Copper/Bronze etc…
Stainless Steel (302, 303, 304, 316, 420) etc…
Steel (mild steel, Q235, 20#, 45#) etc…
Plastic (ABS, Delrin, PP, PE, PC, Acrylic) etc…
 
Process: CNC Machining, CNC Turning, CNC Milling, CNC Lathe, 
CNC boring, CNC grinding, CNC drilling etc…
 
Surface treatment: Clear/color anodized; Hard anodized; Powder-coating;    
Sand-blasting; Painting;
Nickel plating; Chrome plating; Zinc plating; Silver/golden plating; 
Black oxide coating, Polishing etc…
 
General Tolerance:
(+/-mm)
+/-0.001mm or +/- 0.00004″
Certification: ISO9001:2008, ROHS
 
Experience: 15years of CNC machining products 
3years of automation machine manufacturing
 
Lead time : In general:7-15days
Special custom service: making arrangement CHINAMFG customers’ request
 
Minimum Order: Comply with customer’s demand
 
Packaging : Standard: pearl cotton and bubble bag, carton box and seal
For large and big quantity: pallet or as per customers’ requirement
 
Term of Payment: T/T, Paypal, Trade assurance etc…
 
Delivery way: Express(DHL,Fedex, UPS,TNT,EMS), By Sea, By air, or on your requirement
 
Maine equipment:
 
Machining center, CNC, Lathe, Turning machine, Milling machine, Drilling machine, Internal and external grinding machine, Cylindrical grinding machine, Tapping drilling machine, Wire cutting machine etc.
 
Testing facility:
 
Coordinate measuring machine, projector, roughness tester, hardness tester, concentricity tester. Height tester
 
Item Tag:
 
mini cnc milling machine for sale

 Production Facilities

Our Advantage :
ISO9001:2008 certificate
We own a spare parts factory in HangZhou
More than 10 years’ export experience  in various spare parts
The best after-sales sevice
Small order can acceptable
Both standard and non-standard parts are welcomed
We value that the better quality and service will win the market 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

How does a flexible coupling contribute to the longevity of connected equipment?

A flexible coupling plays a crucial role in enhancing the longevity of connected equipment in various ways. It acts as a mechanical interface between two shafts, connecting them while accommodating misalignment, dampening vibrations, and transmitting torque. Here’s how a flexible coupling contributes to the longevity of connected equipment:

  • Misalignment Compensation: One of the primary functions of a flexible coupling is to compensate for both angular and parallel misalignment between two shafts. Misalignment can occur due to various factors, including thermal expansion, assembly errors, or settling of foundation, which can exert excessive stress on the connected equipment. By allowing misalignment, the flexible coupling reduces the stress transmitted to the shafts and connected components, preventing premature wear and failure.
  • Shock and Vibration Dampening: Flexible couplings are designed to absorb shocks and dampen vibrations that occur during operation. Vibrations and shocks can be detrimental to connected equipment, leading to fatigue, wear, and premature failure of components. The coupling acts as a buffer, reducing the impact of vibrations and protecting the equipment from potential damage.
  • Reduced Stress Concentration: A rigid coupling can create stress concentration points on the shafts, leading to fatigue and cracking over time. Flexible couplings distribute the load more evenly along the shafts, reducing stress concentration and minimizing the risk of failure.
  • Transmitting Torque Smoothly: Flexible couplings transmit torque from one shaft to another smoothly, without introducing sudden torque spikes or shocks. This even torque transfer prevents sudden loading on connected equipment, minimizing the risk of damage or accelerated wear on gears, bearings, and other components.
  • Controlling Torsional Vibrations: In systems where torsional vibrations are a concern, certain types of flexible couplings are designed to address this issue. These couplings help control torsional vibrations, which can be damaging to the equipment and cause premature failure.
  • Thermal Expansion Compensation: When the equipment operates at different temperatures, thermal expansion can lead to misalignment between the shafts. A flexible coupling can accommodate the thermal expansion, ensuring that the connected equipment remains aligned and preventing stress on the components.
  • Isolation from External Forces: External forces like impact loads or shaft disturbances can affect the connected equipment. A flexible coupling isolates the equipment from these external forces, protecting it from potential damage.

By providing these essential functions, a flexible coupling helps extend the lifespan of connected equipment by reducing wear and tear, preventing premature failures, and ensuring smooth, reliable operation. The longevity of the connected equipment ultimately results in reduced maintenance costs and increased productivity.

flexible coupling

Can flexible couplings be used in power generation equipment, such as turbines and generators?

Yes, flexible couplings are commonly used in power generation equipment, including turbines and generators. These critical components of power generation systems require reliable and efficient shaft connections to transfer power from the prime mover (e.g., steam turbine, gas turbine, or internal combustion engine) to the electricity generator.

Flexible couplings play a vital role in power generation equipment for the following reasons:

  • Misalignment Compensation: Power generation machinery often experiences misalignment due to factors like thermal expansion, settling, and foundation shifts. Flexible couplings can accommodate these misalignments, reducing the stress on shafts and minimizing wear on connected components.
  • Vibration Dampening: Turbines and generators can generate significant vibrations during operation. Flexible couplings help dampen these vibrations, reducing the risk of resonance and excessive mechanical stress on the system.
  • Torsional Shock Absorption: Power generation equipment may encounter torsional shocks during startup and shutdown processes. Flexible couplings can absorb and dissipate these shocks, protecting the entire drivetrain from damage.
  • Isolation of High Torque Loads: Some power generation systems may have torque fluctuations during operation. Flexible couplings can isolate these fluctuations, preventing them from propagating to other components.
  • Electrical Isolation: In certain cases, flexible couplings with non-metallic elements can provide electrical isolation, preventing the transmission of electrical currents between shafts.

Power generation applications impose specific requirements on flexible couplings, such as high torque capacity, robust construction, and resistance to environmental factors like temperature and humidity. Different types of flexible couplings, including elastomeric, metallic, and composite couplings, are available to meet the varying demands of power generation equipment.

When selecting a flexible coupling for power generation equipment, engineers must consider factors such as the type of prime mover, torque and speed requirements, operating conditions, and the specific application’s environmental challenges. Consulting with coupling manufacturers and following their engineering recommendations can help ensure the appropriate coupling is chosen for each power generation system.

flexible coupling

What role does a flexible coupling play in reducing downtime and maintenance costs?

A flexible coupling plays a significant role in reducing downtime and maintenance costs in industrial machinery and rotating equipment. Here are the key ways in which flexible couplings contribute to these benefits:

  • Misalignment Compensation: One of the primary functions of a flexible coupling is to accommodate misalignment between two connected shafts. Misalignment can occur due to various factors such as thermal expansion, foundation settling, or manufacturing tolerances. By allowing for misalignment, flexible couplings reduce the transmission of harmful forces and stresses to connected components, minimizing wear and preventing premature failures that could lead to costly downtime and repairs.
  • Vibration Damping: Flexible couplings have inherent damping properties due to the elastomeric or flexible elements they incorporate. These elements absorb and dissipate vibration and shock loads that may arise from the operation of rotating machinery. By dampening vibrations, flexible couplings protect the connected equipment from excessive wear and fatigue, extending their service life and reducing the need for frequent maintenance or replacement.
  • Shock Load Absorption: In applications where sudden loads or shocks are common, such as in heavy machinery or high-speed equipment, flexible couplings act as shock absorbers. They can absorb and dissipate the impact energy, preventing damage to the machinery and minimizing downtime caused by unexpected failures or breakdowns.
  • Easy Installation and Alignment: Flexible couplings are designed for ease of installation and alignment. Unlike rigid couplings that require precise shaft alignment, flexible couplings can tolerate some degree of misalignment during installation. This feature simplifies the setup process, reduces installation time, and lowers the risk of misalignment-related issues, ultimately minimizing downtime during initial installation or replacement of couplings.
  • Reduced Maintenance Frequency: The ability of flexible couplings to handle misalignment and dampen vibrations results in reduced wear on bearings, seals, and other connected components. Consequently, the frequency of maintenance intervals can be extended, reducing the need for frequent inspections and component replacements. This directly translates to lower maintenance costs and less downtime for maintenance tasks.
  • Equipment Protection: By reducing the transmission of shock loads and vibrations, flexible couplings act as protective barriers for connected equipment. They help prevent catastrophic failures and subsequent damage to expensive machinery, avoiding unplanned shutdowns and costly repairs.

Overall, flexible couplings are critical components that improve the reliability and longevity of rotating equipment. Their ability to handle misalignment, dampen vibrations, and protect against shock loads contributes to reduced downtime, lower maintenance costs, and increased productivity in industrial applications.

China Custom Auto Lathe Spare Parts Turning Washer Bushing Bolt Nut Flexible Coupling  China Custom Auto Lathe Spare Parts Turning Washer Bushing Bolt Nut Flexible Coupling
editor by CX 2024-05-15

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *