China Best Sales Manufacturers Multiple Types/Size Flexible Coupling Rubber Shaft Coupling 16as for Excavator Coupling

Product Description

Manufacturers Multiple Types/Size Flexible Coupling rubber shaft coupling 16AS for excavator coupling
Our main products:
steel cover lock, filter, oil grid, pump, cylinder head, crankshaft, camshaft, connecting rod, connecting rod bearing, valve, plunger, nozzle, exhaust valve, engine assembly, intake pump , fan blade, engine preheater, radiator, intake valve, main bearing, crankshaft bearing, nozzle, nozzle pipe, oil pump, piston, piston pin, piston ring, plunger, valve seat, thrust bearing, valve guide, valve Seats, valve seals, gasket sets, water pumps, turbochargers, generators, starters, sensors…

Please click here>>>>Contact us for more factory price,shipping and discounts

ENGINE CUSHION
NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name
1 KLB-Q3001 PC40 105*53*10 ENGINE CUSHION 15 KLB-Q3015 E312
FRONT
95*28*16 ENGINE CUSHION 29 KLB-Q3571 SK230 90*45*21 ENGINE CUSHION
2 KLB-Q3002 PC120-6 4D102 82*46*18 ENGINE CUSHION 16 KLB-Q3016 EX312
REAR
95*29*17 ENGINE CUSHION 30 KLB-Q3030 HD250 59*31*13 ENGINE CUSHION
3 KLB-Q3003 PC200-3 124*68*45
205-01-71111
ENGINE CUSHION 17 KLB-Q3017 ZAX230
FRONT
95*28*16 ENGINE CUSHION 31 KLB-Q3031 HD450
FRONT
97*15*19 ENGINE CUSHION
4 KLB-Q3004 PC200-5/6
FRONT
80*46*19
20Y-01-12210
ENGINE CUSHION 18 KLB-Q3018 E320B 110*40*22 ENGINE CUSHION 32 KLB-Q3032 HD450
REAR
118*36*19 ENGINE CUSHION
5 KLB-Q3005 PC200-5
REAR
130*73*25
20Y-01-12221
ENGINE CUSHION 19 KLB-Q3019 E330B 136*44*25 ENGINE CUSHION 33 KLB-Q3033 LS120 87*42*17 ENGINE CUSHION
6 KLB-Q3006 PC200-6
6D102
20Y-01-12222 ENGINE CUSHION 20 KLB-Q3571 DH220-3
FRONT
68*70*12 ENGINE CUSHION 34 KLB-Q3034 LS280
FRONT
86*23*16 ENGINE CUSHION
7 KLB-Q3007 EX200   ENGINE CUSHION 21 KLB-Q3571 DH220-3
REAR
110*105*14 ENGINE CUSHION 35 KLB-Q3035 LS280
REAR
96*25*16 ENGINE CUSHION
8 KLB-Q3008 EX200-5
REAR
167*110*14 ENGINE CUSHION 22 KLB-Q3571 DH220-5 104*74*19 ENGINE CUSHION 36 KLB-Q3036 SH60
SH65
120*110*12 ENGINE CUSHION
9 KLB-Q3009 EX200-6
REAR
175*135*16 ENGINE CUSHION 23 KLB-Q3571 DH280
FRONT
165*200*16 ENGINE CUSHION 37 KLB-Q3037 6D22
FRONT
70*35*21 ENGINE CUSHION
10 KLB-Q3571 EX200
FRONT
120*155*14 ENGINE CUSHION 24 KLB-Q3571 DH280
REAR
200*110*20 ENGINE CUSHION 38 KLB-Q3038 6D22
REAR
95*41*22 ENGINE CUSHION
11 KLB-Q3011 EX200
REAR
165*105*14 ENGINE CUSHION 25 KLB-Q3571 SK60
FRONT
98*103*12 ENGINE CUSHION 39 KLB-Q3039 DH55
FRONT
100*48*17 ENGINE CUSHION
12 KLB-Q3012 EX200 126*100*11 ENGINE CUSHION 26 KLB-Q3026 SK60
REAR
98*103*16 ENGINE CUSHION 40 KLB-Q3040 SH200A3 137*160*16 ENGINE CUSHION
13 KLB-Q3013 EX300
FRONT
87*35*20 ENGINE CUSHION 27 KLB-Q3571 SK120
FRONT
100*15*19 ENGINE CUSHION          
14 KLB-Q3014 EX300
REAR
110*39*22 ENGINE CUSHION 28 KLB-Q3571 SK120
FEAR
100*47*19 ENGINE CUSHION          

COUPLING
NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name
1 KLB-Q2001   25H  162*92 COUPLING 22 KLB-Q2571 16A 155*76 COUPLING 43 KLB-Q2043 S32S 235*97 COUPLING
2 KLB-Q2002 MS110 DH55 30H 195*105 COUPLING  23 KLB-Q2571 16AS 155*76 COUPLING 44 KLB-Q2044 S25S 163*58 COUPLING
3 KLB-Q2003 30H  195*105 COUPLING ASSY 24 KLB-Q2571 22A 153*76 COUPLING 45 KLB-Q2045 E200B 14T     COUPLING
4 KLB-Q2004 EX200-2 40H 170*90 COUPLING 25 KLB-Q2571 25A 185*102 COUPLING 46 KLB-Q2046 50AC 14T  205*40 COUPLING
5 KLB-Q2005 40H   170*90 COUPLING ASSY 26 KLB-Q2026 25AS 185*102 COUPLING 47 KLB-Q2047 SH280   COUPLING
6 KLB-Q2006 45H  183*92 COUPLING 27 KLB-Q2571 28A 178*93 COUPLING 48 KLB-Q2048 E200B  12T   COUPLING
7 KLB-Q2007 45H 183*92 COUPLING ASSY 28 KLB-Q2571 28AS 178*93 COUPLING 49 KLB-Q2049 50AM  16T 205*45 COUPLING
8 KLB-Q2008 90H  203*107 COUPLING 29 KLB-Q2571 30A 215*118 COUPLING 50 KLB-Q2050 SH200 14T  205*40 COUPLING
9 KLB-Q2009 90H  203*107 COUPLING ASSY 30 KLB-Q2030 30AS 215*118 COUPLING 51 KLB-Q2051 E330C 350*145 COUPLING
10 KLB-Q2571 50H  195*110 COUPLING 31 KLB-Q2031 50A 205*108 COUPLING 52 KLB-Q2052 E330C   COUPLING
11 KLB-Q2011 50H   195*110 COUPLING ASSY 32 KLB-Q2032 50AS  205*108 COUPLING 53 KLB-Q2053 168mm*48m 26T 3H   COUPLING
12 KLB-Q2012 110H  215*110 COUPLING 33 KLB-Q2033 90A 272*140 COUPLING 54 KLB-Q2054 242mm*72mm 50T 8H   COUPLING
13 KLB-Q2013 110H 215*110 COUPLING ASSY 34 KLB-Q2034 90AS 272*140 COUPLING 55 KLB-Q2055 295mm*161mm 48T 12H   COUPLING
14 KLB-Q2014 140H  245*125 COUPLING 35 KLB-Q2035 140A 262*132 COUPLING 56 KLB-Q2056 352mm*161mm 48T 8H   COUPLING
15 KLB-Q2015 140H   245*125 COUPLING ASSY 36 KLB-Q2036 140AS 262*132 COUPLING 57 KLB-Q2057 352mm*161mm 46T 8H   COUPLING
16 KLB-Q2016 160H  255*134 COUPLING 37 KLB-Q2037 E300B  16T  278*54 COUPLING 58 KLB-Q2058 318mm*72mm 50T 8H   COUPLING
17 KLB-Q2017 160H  255*134 COUPLING ASSY 38 KLB-Q2038 E450 16T 360*52 COUPLING 59 KLB-Q2059 315mm 42T   COUPLING
18 KLB-Q2018 4A 104*53 COUPLING 39 KLB-Q2039 SH430   12T  205*35 COUPLING 60 KLB-Q2060 268mm*100mm 42T 6H   COUPLING
19 KLB-Q2019 4AS 104*53 COUPLING 40 KLB-Q2040 SH200 14T  205*40 COUPLING 61 KLB-Q2061 167mm*90mm 47T 3H   COUPLING
20 KLB-Q2571 8A 130*70 COUPLING 41 KLB-Q2041 50ASM  20T  205*40 COUPLING 62 KLB-Q2062 182mm 42T    COUPLING
21 KLB-Q2571 8AS 130*70 COUPLING 42 KLB-Q2042 SH160(SH60)  15T 173*22 COUPLING 63 KLB-Q2063 220mm 46T    COUPLING

1Q:What is your brand?
1A:Our own brand: Mita Group and its range of excavator parts.

2Q:Do you have your own factory? Can we have a visit?
2A:Absolutely, you are alwayswelcome to visit our factory.

3Q:How do you control the quality of the products?
3A:Our factory was obtained the ISO9001CERTIFICATE.Every process of the production is strictly controlled. And all products will be inspected by QC before shipment.

4Q:How long is the delivery time?
4A:2 to 7 days for ex-stock orders. 15 to 30 days for production.

5Q:Can we print our company logo onproduct and package?
5A:Yes, but the quantity of the order is required. And we need you to offer the Trademark Authorization to us.

6Q:Can you provide OEM BRAND package?
6A:Sorry, we can only offer our company ACT BRAND package or neutral packing,blank package ifyou need, and the Buyers’ Brand as authorized.7Q:How long is the warranty period?7A:3 months /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

shaft coupling

How to Select the Right Shaft Coupling for Specific Torque and Speed Requirements

Selecting the appropriate shaft coupling involves considering the specific torque and speed requirements of the application. Here’s a step-by-step guide to help you choose the right coupling:

1. Determine Torque and Speed:

Identify the torque and speed requirements of the application. Torque is the rotational force required to transmit power between the shafts, usually measured in Nm (Newton-meters) or lb-ft (pound-feet). Speed refers to the rotational speed of the shafts, typically measured in RPM (revolutions per minute).

2. Calculate Torque Capacity:

Check the torque capacity of various shaft couplings. Manufacturers provide torque ratings for each coupling type and size. Ensure that the selected coupling has a torque capacity that exceeds the application’s torque requirements.

3. Consider Misalignment:

If the application involves significant shaft misalignment due to thermal expansion, vibration, or other factors, consider flexible couplings with good misalignment compensation capabilities. Elastomeric or beam couplings are popular choices for such applications.

4. Assess Operating Speed:

For high-speed applications, choose couplings with high rotational speed ratings to avoid resonance issues and potential coupling failure. High-speed couplings may have specialized designs, such as disk or diaphragm couplings.

5. Evaluate Environmental Conditions:

If the coupling will operate in harsh environments with exposure to chemicals, moisture, or extreme temperatures, select couplings made from corrosion-resistant materials or with protective coatings.

6. Check Torsional Stiffness:

In applications requiring precision motion control, consider couplings with high torsional stiffness to minimize torsional backlash and maintain accurate positioning. Bellows or Oldham couplings are examples of couplings with low torsional backlash.

7. Size and Space Constraints:

Ensure that the selected coupling fits within the available space and aligns with the shaft dimensions. Be mindful of any installation limitations, especially in confined spaces or applications with limited radial clearance.

8. Consult Manufacturer’s Data:

Refer to the manufacturer’s catalogs and technical data sheets for detailed information on each coupling’s torque and speed ratings, misalignment capabilities, materials, and other relevant specifications.

9. Consider Cost and Maintenance:

Compare the costs and maintenance requirements of different couplings. While some couplings may have higher upfront costs, they could offer longer service life and reduced maintenance costs in the long run.

By following these steps and considering the specific torque and speed requirements of your application, you can select the right shaft coupling that will ensure efficient power transmission and reliable performance for your mechanical system.

“`shaft coupling

Explaining the Concept of Backlash and How It Affects Shaft Coupling Performance

Backlash is the angular movement or play between the mating components of a mechanical system when the direction of motion is reversed. In the context of shaft couplings, backlash refers to the free rotational movement between the connected shafts before the coupling transmits torque from one shaft to the other.

Backlash occurs in certain coupling designs that have features allowing relative movement between the coupling’s mating parts. Common coupling types that may exhibit some degree of backlash include elastomeric couplings (such as jaw couplings), gear couplings, and Oldham couplings.

How Backlash Affects Shaft Coupling Performance:

1. Loss of Precision: In applications requiring precise motion control, backlash can lead to inaccuracies and reduced positional accuracy. For example, in CNC machines or robotics, any rotational play due to backlash can result in positioning errors and decreased machining or movement precision.

2. Reversal Impact: When a reversing load is applied to a coupling, the presence of backlash can lead to a brief period of rotational play before the coupling re-engages, causing a momentary jolt or impact. This impact can lead to increased stress on the coupling and connected components, potentially reducing their lifespan.

3. Dynamic Response: Backlash can affect the dynamic response of the mechanical system. In systems requiring rapid acceleration or deceleration, the initial play due to backlash may create a delay in torque transmission, affecting the system’s responsiveness.

4. Noise and Vibration: Backlash can cause noise and vibration in the system, leading to increased wear and potential fatigue failure of components.

5. Misalignment Compensation: In some flexible coupling designs, a certain amount of backlash is intentionally incorporated to allow for misalignment compensation. While this is a beneficial feature, excessive backlash can compromise the coupling’s performance.

Minimizing Backlash:

Manufacturers often design couplings with specific features to minimize backlash. For instance, some gear couplings employ crowned gear teeth to reduce clearance, while elastomeric couplings may have preloaded elastomeric elements. Precision couplings like zero-backlash or torsionally rigid couplings are engineered to eliminate or minimize backlash for applications requiring high accuracy and responsiveness.

When selecting a coupling, it’s essential to consider the application’s specific requirements regarding precision, speed, reversing loads, and misalignment compensation, as these factors will determine the acceptable level of backlash for optimal performance.

“`shaft coupling

Diagnosing and Fixing Common Issues with Shaft Couplings

Regular inspection and maintenance of shaft couplings are essential to detect and address common issues that may arise during operation. Here are steps to diagnose and fix some common coupling problems:

1. Abnormal Noise or Vibration:

If you notice unusual noise or excessive vibration during equipment operation, it may indicate misalignment, wear, or damage in the coupling. Check for any visible signs of damage, such as cracks or deformations, and inspect the coupling for proper alignment.

Diagnosis:

Use a vibration analysis tool to measure the vibration levels and identify the frequency of the abnormal vibrations. This can help pinpoint the source of the problem.

Fix:

If misalignment is the cause, adjust the coupling to achieve proper alignment between the shafts. Replace any damaged or worn coupling components, such as spiders or elastomeric inserts, as needed.

2. Excessive Heat:

Feeling excessive heat on the coupling during operation can indicate friction, improper lubrication, or overload conditions.

Diagnosis:

Inspect the coupling and surrounding components for signs of rubbing, lack of lubrication, or overloading.

Fix:

Ensure proper lubrication of the coupling, and check for any interference between the coupling and adjacent parts. Address any overloading issues by adjusting the equipment load or using a coupling with a higher torque capacity.

3. Shaft Movement:

If you observe axial or radial movement in the connected shafts, it may indicate wear or improper installation of the coupling.

Diagnosis:

Check the coupling’s set screws, keyways, or other fastening methods to ensure they are secure and not causing the shaft movement.

Fix:

If the coupling is worn or damaged, replace it with a new one. Ensure proper installation and use appropriate fastening methods to secure the coupling to the shafts.

4. Sheared Shear Pin:

In shear pin couplings, a sheared shear pin indicates overloading or shock loads that exceeded the coupling’s torque capacity.

Diagnosis:

Inspect the shear pin for damage or breakage.

Fix:

Replace the sheared shear pin with a new one of the correct specifications. Address any overloading issues or adjust the equipment to prevent future shearing.

5. Coupling Wear:

Regular wear is normal for couplings, but excessive wear may lead to decreased performance and increased misalignment.

Diagnosis:

Inspect the coupling components for signs of wear, such as worn elastomeric elements or damaged teeth.

Fix:

Replace the worn or damaged components with new ones of the appropriate specifications.

Remember, regular maintenance and periodic inspection are key to diagnosing issues early and preventing severe problems. Always follow the manufacturer’s recommendations for maintenance and replacement schedules to ensure the proper functioning and longevity of the shaft coupling.

“`
China Best Sales Manufacturers Multiple Types/Size Flexible Coupling Rubber Shaft Coupling 16as for Excavator Coupling  China Best Sales Manufacturers Multiple Types/Size Flexible Coupling Rubber Shaft Coupling 16as for Excavator Coupling
editor by CX 2024-04-19

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *